Production and isolation of an ellipsoidal C₈₀ fullerene

Chun-Ru Wang, Toshiki Sugai, Tsutomu Kai, Tetsuo Tomiyama and Hisanori Shinohara*

Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan. E-mail: nori@chem2.chem.nagoya-u.ac.jp

Received (in Cambridge, UK) 12th January 2000, Accepted 23rd February 2000 Published on the Web 17th March 2000

We report the first successful production and isolation of a new C₈₀ isomer together with ¹³C NMR structural and UV– VIS–NIR spectroscopic studies of the purified sample; ¹³C NMR results unambiguously suggest that the new C₈₀ isomer has an ellipsoidal structure with D_{5d} symmetry.

 C_{80} has seven structural isomers satisfying the isolated pentagon rule (IPR).^{1,2} However, owing to its extremely low abundance in arc-burning soot, this fullerene has long been known as one of the three 'missing' fullerenes³ between C_{70} and C_{96} (the other two fullerenes are C_{72} and C_{74}).³ It was not until recently that a small quantity of $C_{80}(D_2)$ was isolated by Henrich *et al.*⁴ Here, we report the production, isolation and ¹³C NMR structural analysis of a new C_{80} isomer.

Fullerene soot containing C₈₀ was produced by the dc arc discharge method. Graphite/iron composite rods (12.5×12.5 \times 300 mm, 0.7 atom% Fe/C, Toyo Tanso Co.Ltd.) were used for the arc discharge at 350 A and 23 V under a 12 l min⁻¹ He flow (90-100 Torr). The resulting soot was succesively extracted with carbon disulfide and pyridine for 20 h. The separation of C₈₀ was achieved by a multi-stage HPLC method^{5,6} using a Buckyprep column (nacalai Cosmosil, 25 \times 250 mm, toluene eluent) at 16.5 ml min⁻¹ flow rate and a Buckyclutcher column (Regis, 20×300 mm) at 10 ml min⁻¹ flow rate. The first stage was performed on the Buckyprep column which roughly separates $C_{80}(I)$ and $C_{80}(II)$ from other fullerenes by collecting the corresponding C₈₀-containing fractions. In the second stage, the HPLC fractions collected in stage 1 were re-injected into a 5PYE column (nacalai Cosmosil, 25×250 mm, toluene eluent) and recycling HPLC was performed. The third stage was again a recycling HPLC process on the Buckyclutcher column which can finally isolate $C_{80}(I)$ and $C_{80}(II)$ obtained from stage 2. The purity of the isolated samples [$C_{80}(I)$: >98%, ca. 5 mg; $C_{80}(II)$: >98%, ca. 2 mg] was determined by both positive and negative laser-desorption time-of-flight (LD-TOF) mass spectrometry.

On the 5PYE column, the C_{80} isomers I and II have different HPLC retention times. $C_{80}(I)$ appears immediately after C_{78} . A ¹³C NMR spectrum of this fullerene has already been reported by Henrich *et al.*⁴ to have 20 near-equal signals, suggesting D_2 symmetry. $C_{80}(II)$ has a much longer retention time than $C_{80}(I)$ and appeared after C_{86} . The relative abundance of $C_{80}(I)$ to $C_{80}(II)$ is *ca.* 30:1. $C_{80}(II)$ is light green in carbon disulfide solution. Fig. 1 shows the VIS-NIR absorption spectra of $C_{80}(II)$ together with that of $C_{80}(D_2)$ for comparison. Aside from the relative intensity, the band positions in the two absorption spectra are similar. The characteristic peaks of $C_{80}(\hat{D}_2)$ are seen at 420(sh), 466(sh), 596, 775, 860, and 882 nm, whereas for $C_{80}(II)$ the main peaks are observed at 446(sh), 484(sh), 589, 606, 845 and 880 nm. C₈₀(II) shows a strong absorption band at ca. 600 nm which accounts for the greenish color of this fullerene in CS₂ solution.

Fig. 2 shows a ¹³C NMR spectrum of $C_{80}(II)$ in carbon disulfide solution with chromium(III) tris(acetylacetonate) as a relaxant and benzene-d₆ as the internal lock. The spectrum consists of a series of three distinct lines of near-equal intensity (lines 1,2,3) and two additional lines at half the intensity (lines 4* and 5*). The position of line 1 (δ 128.9) is very close to that of benzene-d₆ (δ 128.5). However, its characteristic fullerene linewidth (*ca.* 0.02 ppm) unambiguously distinguishes it from

Fig. 1 VIS–NIR absorption spectra of $C_{80}(I)$ and $C_{80}(II)$ in CS₂ solution.

other solvent signals (linewidth > 0.1 ppm). We also performed ¹³C NMR measurements by using acetone-d₆ instead of benzene-d₆ as an internal lock. The results confirm the five NMR lines and show that no C₈₀ resonant lines were hidden by the benzene signals. The five signals cover a wide chemical shift range (δ 128.9–163.9), suggesting that C₈₀(II) has an ellipsoidal shape. C₈₀ has seven IPR isomers (D_2 , D_{5d} , C_{2v} , $C_{2v'}$, D_3 , D_{5h} and I_h)^{2.4}. The present ¹³C NMR result unambiguously assigns C₈₀(II) as the D_{5d} isomer (3 × 20; 2×10), where ($a \times b$) indicates (number of NMR lines × relative intensity).

The most stable structure of C_{80} as D_{5d} is inferred from theoretical optimization by a nonlocal density function B3LYP/ 3-21G calculation using the Gaussian 98W program.⁷ As shown in Fig. 3, $C_{80}(D_{5d})$ has an ellipsoidal structure with an aspect ratio (long axis/short axis) of *ca*.1.3. $C_{80}(D_{5d})$ can easily be obtained by adding one C_{10} ring on a half cap of $C_{70}(D_{5h})$ (*i.e.*, C_{30} or C_{40}) or adding two C_{10} rings successively on a $C_{60}(I_h)$ hemisphere (*i.e.*, C_{30}). As proposed by Curl,⁸ $C_{70}(D_{5h})$ is formed by dissecting C_{60} into two C_{30} hemispheres along a suitable orientation (rotating one hemisphere 36° with respect to another hemisphere), and then by adding a ring of 10 carbon

Fig. 2 ¹³C NMR spectrum of purified C₈₀(II). The spectrum consists of five signals: 1(128.9, 13.9), 2(130.2, 12.7), 3(152.4, 12.2), 4*(156.3, 7.6), 5*(163.9, 6.0), in which (δ , I_{rel}) represent measured chemical shifts δ and relative intensity I_{rel} , and where lines indicated by * are half-intensity lines.

Fig. 3 The optimized structure of the $C_{80}(D_{5d})$ isomer based on *ab initio* calculation at the B3LYP/3-21G level by Gaussian 98W. (a) Top view along the main C_5 axis and (b) side view. The short/long axis ratio (a)/(b) is *ca.* 1/1.3.

atoms at the equator to combine the two hemispheres. The $C_{80}(D_{5d})$ fullerene is formed in a similar way by adding two C_{10} ring successively at the equator of C_{60} (*i.e.*, $C_{30} + C_{10} + C_{10} + C_{30}$). On going from $C_{60}(I_h)$ to $C_{70}(D_{5h})$ to $C_{80}(D_{5d})$, the fullerene structure, therefore, progressively acquires tubular and cap (hemisphere) parts, which leads to ¹³C NMR lines spread over a wide range of chemical shift values.

The calculated energy ordering of the seven C_{80} isomers at the HF/Am1 level is: $D_5(D_{5d}) < D_2[+2.3] << C_{2v}[+23.6] < C_3(D_3)[+36] < C_8(C_{2v'})[+38.5] < C_8(D_{5h})[+49.9] << D_2(I_h)[+102 kcal mol⁻¹], where the stabilization energies are given relative to the most stable <math>D_5(D_{5d})$ isomer.^{4,9} The $D_5(D_{5d})$ - C_{80} and D_2 - C_{80} isomers are nearly isoenergetic and

their relative energies are much smaller than those of the other five isomers. The currently isolated $C_{80}(D_{5d})$ is one of the most ellipsoidal fullerenes so far produced and isolated.

C. R. W. thanks JSPS for a Post Doctoral Fellowship for Foreigner Researchers. H. S. thanks JSPS for Future Program on New Carbon Nano-Materials for financial support of the present study.

Notes and references

- 1 H. W. Kroto, Nature, 1987, 329, 529.
- 2 P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Clarendon, Oxford, 1995.
- ³ T. S. M. Wan, H. W. Zhang, T. Nakane, Z. Xu, M. Inakuma, H. Shinohara, K. Kobayashi and S. Nagase, *J. Am. Chem. Soc.*, 1998, **120**, 6806.
- 4 F. H. Henrich, R. H. Michel, A. Fischer, S. R. Schneider, S. Gilb, M. M. Kappes, D. Fuchs, M. Bürk, K. Kobayashi and S. Nagase, *Angew. Chem.*, *Int. Ed. Engl.*, 1996, **35**, 1732.
- 5 T. J. S. Dennis and H. Shinohara, Chem. Commun., 1998, 883.
- 6 C-R.Wang, M. Inakuma and H. Shinohara, *Chem. Phys. Lett.*, 1999, 300, 379.
- 7 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Bobb, J. R. Cheeseman, T. Keith, G. A. Petersson, G. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L.Martin, D. L. Fox, J. S. Binkley, D. J. DeFrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, *Gaussian 98W*, Gaussian, Pittsburgg, PA, 1998.
- 8 R. F. Curl, Angew. Chem., Int. Ed. Engl., 1997, 36, 1566.
- 9 K. Kbayashi, S. Nagase and T. Akasaka, *Chem. Phys. Lett.*, 1995, 245, 230.

Communication b000387p